从地铁刷卡数据看北京通勤“45分钟定律”

导读

职住动态关系与居民通勤行为紧密相关,是当前超大城市精细化管理、城市可持续发展的关键问题之一。11月20日,《美国科学院院刊》在线发表了中国科学院地理科学与资源研究所王姣娥、黄洁与悉尼大学、香港大学、北京交通大学合作者基于2011-2017年北京市地铁刷卡数据进行的职住动态关系研究。本版特约研究者撰文向读者介绍他们的研究。

地铁刷卡数据反映职住变化

大数据是指一种具备海量的数据规模、快速的数据流转、真实记录的数据集合。因此,获取、存储、管理大数据的难度均大大超出了传统问卷调查、统计数据。大数据挖掘需要新处理模式、强洞察发现力和流程优化能力,才能最大程度地丰富大数据的科学价值。

在城市交通研究中,智能交通卡刷卡数据(包括地铁和公交)、车载GPS数据、共享单车轨迹数据等都是学者们常用的数据集合,因为这些数据集合包含了出行记录的详细信息。以地铁出行为例,智能交通卡刷卡数据会赋予持卡人一个固定卡号,并且记录每一次出行的进站点、进站时间、出站点以及出站时间。每一条出行记录就包括了出行者代号、出发地和目的地、两点间出行时间的详细信息,可以用来研究居民出行行为。

虽然城市交通研究已经广泛运用大数据,但是以往的研究均局限在短期观测、整体研究的角度,缺乏对社会经济内涵的挖掘。

什么是了解城市居民生活的重要因素?可以说,工作地点、居住地点和连接二者的通勤反映了居民的生活节奏、生活轨迹、生活品质等。因此,通勤行为与职住动态关系一直是地理学、经济学、社会学等学科长期关注的研究热点。

考虑到以上因素,研究者运用2011-2017年北京市地铁刷卡数据,寻找连续7年乘坐地铁通勤的持卡人。根据每位持卡人每年的出行规律,搜寻当年所有从工作地返家的出行记录(注:数据经过清洗,不包含任何个人隐私信息)。在这些出行记录里,每位持卡人的进站点可认为是离工作地最近的站点,即“工作地站点”;每位持卡人的出站点可认为是离居住地最近的站点,即“居住地站点”;还可以获得职住站点之间的相应出行时间。以此结果构建的数据库,可以帮助研究者追踪持卡人长期的职住动态变化。

北京居民通勤的“45分钟定律”

研究发现了一个有趣的“45分钟定律”。经过7年的观测,45分钟的地铁内通勤时间(进站点到出站点的时间)可以认为是北京居民可忍受通勤时间的最大值:

——若地铁内通勤时间小于45分钟,居民倾向于延长通勤时间进而获取更好的就业机会或者居住环境;

——若地铁内通勤时间大于45分钟,即超过了可忍受通勤时间的阈值,居民搬迁职住地时会以缩短通勤时间为目标之一。

通勤是生活中的小事,却与每个人的生活息息相关,影响着我们的生活幸福感。45分钟的地铁内通勤时间意味着“门到门”的单程通勤时间大致是一个小时。45分钟可忍受阈值的发现可以为北京市轨道线路规划提供一个科学的依据。当然,这一定律只能适用于类似规模的大城市轨道交通规划。不同规模的城市可能存在着不同的可忍受通勤时间。

地铁通勤者分为四类人群

如果我们固定观测人群,那么在短期内,他们的职住搬迁比例会逐渐降低。诚然,我们总是倾向于更加稳定的生活,不是吗?但是,如果我们延长观测周期,居民的职住搬迁比例会出现周期性波动。也就是说,每隔一段时间人们搬家或者换工作的概率都会变大,因为人生中重大的事情在发生,比如,生小孩了要换更大的房子;工作有了一定的积累就换工作。对于北京市长期乘坐地铁通勤的居民来说,他们的波动周期大致是4年。试想一下,你是不是在四年内进行了搬家或者换工作呢?

什么是能够反映人们生活状态的主要因素呢?对待通勤时间和住房成本的态度被认为是主要因素。比如,有些人愿意每天的通勤时间长一些、少付一些租金;而有些人认为时间更加宝贵,愿意支付更多的租金来减少通勤时间。研究者收集了北京市每个地铁站点周边二手房每平方米的平均价格,匹配到识别出来的居住站点,分析了7年内每个持卡人住房成本和通勤时间的相互影响关系。

结合地铁通勤者职住地点、住房成本以及出行时间的变化特征,研究者找到了四类截然不同的人,即安居乐业者、迁居者、升职定居者、跳槽者。

热闻

晨光推荐

晨光娱乐

晨光汽车