DeepMind难以盈利,人工智能该走向何处去? - 科技行者(2)

而且在围棋领域大显身手的技能,也很难解决其它挑战性问题——例如癌症与清洁能源。这类状况早已有之:IBM公司的Watson曾在问答节目当中一鸣惊人,但却一直无法成功进军医学诊断领域。虽能够在某些病例中提供良好表现,但Watson在另一些病例中却惨遭失败,甚至还曾经在心脏病发作症状的判断上犯错——要知道,这可是医学新生都能准确判断的病症。

当然,时间也许能够解决这个难题。至少自2013年以来,DeepMind就一直在努力研究深度强化学习技术,而且科技进步也向来难以快速转化为实际产品。DeepMind以及其它研究机构,最终也许能够找到一种可行的方式,促进深度强化学习带来更稳定也更契合任务内容的结果;又或者,这项技术未来能够与其它技术结合起来,迸发出新的能量。也许深度强化学习最终能够像当年的晶体管一样,成为一种彻底改变世界的实验室发明,也有可能永远停留在探索阶段,仅仅作为人类不断探索真理的道路上的又一块铺路石。但无论如何,笔者个人猜测最终结果可能介于这两者之间——有用而且广泛存在,但又不足以改变整个世界。

虽然DeepMind目前的成果没能完全符合人们的期待,相信也不会有人对其妄加指摘。深度强化学习不一定是通往人工通用智能的正确道路,但这丝毫不妨碍DeepMind自身的伟大——这仍是一个运营严密、资金充裕而且人才济济的机构。而且如果接下来AI的发展方向有所变化,DeepMind也一定会是能够迅速抓住机会的参与者之一。就目前来看,能够与DeepMind相抗衡的研究机构仍然屈指可数。与此同时,Alphabet也是一家财力雄厚的企业,对他们来说一年5亿美元也不是啥大问题。Alphabet公司曾非常英明地决定投资AI技术,其中包括目前同样在快速成长的Google Brain项目。Alphabet方面可能会通过多种途径调整自家AI方案的组合方式,不过考虑到这是一家年收入高达1000亿美元的行业巨头,而且旗下搜索服务及广告推荐等大部分业务都依赖于AI技术,相信他们有能力也有理由继续支持这些重量级研发项目。

>>> 过度炒作难题

关于最后一个问题,我们目前还很难判断DeepMind的经济状况会给整个AI市场带来怎样的影响。如果交付的成果完全跟不上当初的炒作宣传,那么“人工智能寒冬”也许终将来临,甚至导致原本的支持者失去信心而停止投入。另外,如果DeepMind在未来几年中的亏损额继续一路飙升,恐怕Alphabet自己也有可能被迫退出。毕竟到目前为止,DeepMind还是拿不出像样的财报数据,时间久了投资者难免要重新思考自己对于AI技术抱持的立场。

同样麻烦缠身的,远不只是DeepMind。无论是无人驾驶汽车还是能够顺畅理解人类语言的聊天机器人,这些几年前被炒得火热的概念至今仍然没有实现。Mark Zuckerberg在2018年4月的美国国会听证会上曾保证,虚假新闻问题很快就会在AI技术面前土崩瓦解。但是情况显然没这么简单,这也使得整个社会对于AI技术的看法变得愈发保守——不信承诺,信“疗效”。

至少就当下看,人工通用智能还只是个目标,距离真正落地还有很长的路。虽然AI技术在广告及语音识别等一部分领域取得良好进展,但必须承认,AI发展还远称不上成熟。但在另一方面,我们也要认可AI在大数据分析领域的强大能力;而且哪怕只是当前的水平,AI也已经是一种卓越的技术工具。因此即使未来企业不再倾力投入,AI的研究与发展也绝对不会沉寂下去。

>>> 预测未来

在笔者看来,十年之后我们可能会得出结论,发现深度强化学习的意义其实被高估了。这也使得其它不少真正重要的研究方向遭到忽视。毕竟在强化学习领域投入的第一块钱,都代表着其它研发经费的缩减——例如对于人类认知科学的研究。当下,很多机器学习研究人员都在问,“机器如何利用大量数据优化复杂问题?”但我们真正应该关心的,其实是“为什么孩子们用不着那么多数据和那么复杂的处理流程,就能掌握自然语言并理解现实世界?”如果我们能在后一个问题上多花点时间、资金和精力,也许人工通用智能的来临还能更早一些。

热闻

晨光推荐

晨光娱乐

晨光汽车